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A new double resonance probe design for NMR experiments for
systems with close resonance frequencies is introduced. The design
is based on two coupled resonators and was extensively tested on
magnetically aligned powders of several high temperature super-
conductors by performing double resonance experiments between
the 65Cu and 63Cu isotopes as well as between transitions of
different magnetic quantum number of the same spin. The probe’s
performance approaches that of a single resonance circuit and it
has only 4 variable tuning/matching elements. © 1998 Academic Press
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1. INTRODUCTION

Already in the early years of NMR, Pound (1) demonstrated
the usefulness of double resonance (DR) techniques (on qua-
drupolar nuclei in solids). Since then numerous methods have
been developed (for reviews see (2–6)).

Recently, we have introduced new double resonance tech-
niques for resolution enhancement of quadrupolar nuclei (7)
and showed their usefulness in the field of high temperature
superconductors (8). These DR techniques involve transitions
between neighboring Zeeman levels which are shifted by a
strong quadrupolar interaction. For such experiments we
needed a DR probe which is efficient for close frequencies.
There are many other experiments which require a similar
probe, e.g., spin echo double resonance (SEDOR) measure-
ments between the two Cu isotopes in a variety of materials, or,
between nuclei of different atoms which have similar reso-
nance frequencies, e.g., Al and Na.

When both resonances of a DR probe have to be efficient,
which basically means a high filling factor at both frequencies
(9), designs with a single sample coil are superior to cross coil
designs, in particular if the spatial variation of the radio fre-
quency (RF) fields at both frequencies is important (e.g., for
the Hartmann–Hahn condition). The concept of such designs is
to build two resonant circuits which share the same sample coil
and decouple both circuits by means of wave traps (which
ideally represent a short at one frequency and an infinite
impedance at the other frequency). Many variations of this
design exist (10, 11), and problems are only caused by the
available space (typically 6 variable impedances are needed),

power handling, and spurious responses at higher frequencies
(12). However, it is well known that such a probe design is not
suitable for close frequencies since the finite bandwith of the
traps prohibits easy tuning and matching.

We introduce a new concept for DR probe design which is
based on coupled oscillators, an approach which is often em-
ployed in order to describe more involved coupled systems
(e.g., coupled pendulums, chemical bonds). The coupling lifts
the degeneracy of the two almost identical levels which acquire
a frequency difference given by the strength of the coupling.
The resulting two new normal modes are exploited in our
probes. We discuss the basic principles of such probe design,
show that they can be operated with the minimum set of
variable impedances, are easily tuned and matched, and very
suitable for close frequencies.

2. SIMPLE COUPLED CIRCUITS

Before we discuss three basic circuits with coupled oscilla-
tors we would like to address the mechanical analog of two
coupled pendulums, Fig. 1.

The double pendulum has two normal modes of motion
(symmetric and antisymmetric) where both pendulums move
either in-phase or anti-phase. With the symmetry arguments
shown in Fig. 1 we find the well known frequencies,
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wheres denotes the length of each pendulum,K the spring
constant, andm the mass of each pendulum. It is instructive for
the discussion of the electric circuits to keep the properties of
the coupled pendulums in mind. In particular, the choice of
coupling for the two pendulums shown in Fig. 1 is responsible
for the fact that one of the frequencies is the same as for the
uncoupled casev0, whereas the second frequencyv1 is shifted
upwards.

Let us now consider some basic coupling schemes for two
identical circuits, each consisting of a capacitorC and a par-
allel inductorL, i.e., with a resonance frequency
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We start with the inductive coupling in Fig. 2a. If we denote
the mutual inductance of both coils byM, then the circuit in
Fig. 2a can be replaced by that in Fig. 2b. Now, for in-phase
currents in both loops, Fig. 2c, no current flows throughM and
we can replace it with a ground connection. For anti-phase
currents, Fig. 2d, twice the single loop current goes throughM
and we can replaceM by two independent coils, each with
inductance 2M.

From Fig. 2 we find for the two modes the effective induc-
tancesL9 5 L 6 M, and the resonance frequencies,
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which are shifted downwards and upwards with respect tov0.

Next we show in Fig. 3 a capacitively coupled circuit. With
the symmetry arguments shown we conclude immediately for
the resonance frequencies,
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We realize that the circuit in Fig. 3 corresponds to the pendu-
lum of Fig. 1, in that the uncoupled frequencyv0 is unchanged
by the coupling and a higher frequencyv1 appears.

As a last example we look at Fig. 4. This circuit follows
from that in Fig. 3 by replacing the “T” capacitor network by

FIG. 1. (a) Two spring coupled identical pendulums. For in-phase motion
(b) the spring K is not forced (c). For anti-phase motion (d) the center of the
spring is at rest and K can be replaced by two springs with twice the stiffness,
with the center fastened to a fixed wall (e).

FIG. 2. (a) Two identical resonant circuits coupled by the mutual induc-
tanceM can be represented by the circuit (b). For in-phase currents (c) there
is no current throughM and we can replace it by a ground connection. For
anti-phase currents (d) twice the current of a single loop flows throughM and
we can replace it by two independent inductances, each with 2M.

FIG. 3. Capacitor coupled circuit for (a) in-phase currents and (b) anti-
phase currents.
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a “P” capacitor network. Again, from Fig. 4 we infer for the
resonance frequencies
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For this circuit the coupling introduces a second, lower fre-
quency. (A mathematical description of the coupled systems
shown in Figs. 1–3 can be found in Ref. (13).)

Of course, there are more possibilities in designing coupled
circuits, e.g., by redistributing or dividing some of the lumped
elements, or by adding additionalL,C-combinations. The latter
resembles methods for filter design, but has also been used in
its extreme for the construction of an extremely broadband
probe (14). While we were writing our manuscript Hu, Reimer,
and Bell (15) have published a version of the two-coil design
which is closely related to the circuit shown in Fig. 3.

3. OUR DOUBLE RESONANCE PROBE

If we want to use coupled circuits for our NMR probe we
demand in addition to the mere frequency response a good
filling factor, a homogeneous RF field, easy tuning, and easy
adjustment of the driving impedance (matching). This leaves
us with two questions: Which of the above circuits should one
use for a double resonance probe? How should one match the
circuit to the 50-V transmission line?

As to the first question, we abandoned the inductively coupled
design of Fig. 2 since a reliable inductive coupling is problematic
and it influences the RF homogeneity. Our decision between the
two capacitively coupled circuits was based on our needs. Since
we were predominantly interested in double resonance experi-
ments between central and satellite transitions for quadrupolar
nuclei, and we favored an easily adjustable lower frequency we
chose the circuit in Fig. 4. Also, the coupling capacitor for the
circuit in Fig. 4 is much smaller than that required for the circuit
in Fig. 3. Therefore, it is easier to achieve a large tuning range
with the setup of Fig. 4. In any case, we think it is very important

to use a circuit which leaves one frequency fixed. This way tuning
and matching will be much easier.

As to the coupling of the circuit to the transmission line,
many schemes are possible (capacitive or inductive at various
parts of the circuit (16, 17)). One has to remember, however,
that the coupling to the two modes will depend on the sym-
metry, as well. For example, if one attempted to couple to the
circuit in Fig. 4 by applying a voltage acrossCc one would not
excite the antisymmetric mode. We chose a design with a
single connection from the 50-V system (single-point match-
ing) since it enables us to use a single power-amplifier for both
frequencies in the DR experiments.

In Fig. 5 we give some examples for single-point matching.
For most of our experiments we have chosen the coupling
circuit shown in Fig. 5c, therefore, we would like to discuss
tuning and matching of this circuit in more detail.

For matching purposes we have to include losses in the
system. For the frequency range of NMR one can in principle
find capacitors such that all the losses in the above circuits are
given by the resistive part of the impedance of the coil alone,
typically represented by a series resistorr or a shunt resistorR
to the coil. The quality factor of the coil is then given byQ 5
vL/r 5 R/vL for low losses.

In the notation with a parallel resistorR, the input imped-
ance of a simple parallel circuit shown in Fig. 6a can be written
as

Z0 5 R
1 1 iQ~1 2 v2LC!

1 1 Q2~1 2 v2LC!2 . [6]FIG. 4. Another capacitor coupled circuit for (a) in-phase currents and (b)
anti-phase currents.

FIG. 5. Impedance matching for the circuit of Fig. 4. Inductive coupling
(a) to one of the coils by means of voltage division provided by a tapped coil;
capacitive voltage divider (b) with a largeCi; capacitive current divider (c)
with a smallCi. For most of our experiments we used the circuit (c).
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In order to match the circuit to the line, we add a matching
capacitorCi, cf. Fig. 6b, and obtain for the input impedanceZc

near resonance,

Zc 5
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, [7]

with
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wherev2 is the new “resonant frequency” at which the im-
pedanceZc is purely resistive. It is somewhat smaller than the
resonance frequencyv0 of the simple parallel circuit.

As we derive in the Appendix, the single-point total input
impedanceZi for the coupled circuits in the arrangement of
Fig. 5c is given by Eq. [A6],

Zi 5
1

ivCi
1

1

2
~Z0 1 Z2!, [9]

where Z0 and Z2 refer to the input impedance of a simple
parallel circuit as in Eq. [6] withL, R, and the effective
capacitancesC0 5 C and C2 5 C 1 2Cc according to the
replacement circuits shown in Fig. 4 for the two normal modes.
Now, if we are close to one of the two well-separated normal
mode frequencies, only the corresponding impedance will
dominate, e.g., near the normal mode withv2 the input ca-
pacitorCi appears to be in series withZ2/ 2 only. Equation [9]
can then be interpreted as driving two simple parallel circuits,
each withZ2, in parallel through the coupling capacitorCi.
Therefore, near modev0 andv2 the input capacitorCi appears
to be in series with a single parallel circuit withL/ 2, R/ 2, C0,
andL/ 2, R/ 2, C2, respectively. These considerations allow us
to use Eq. [7] and Eq. [8] for an estimate of the matching
frequency and the corresponding impedance. If we denote with
vhf and vlf the matching frequencies near the two eigen fre-
quenciesv0 andv2, respectively, we find
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, Zhf <
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[10]

and
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These results seem to indicate that one cannot match the
circuit at both frequencies to a fixed resistive impedance (50
V). However, a slight variation of one of the tuning capacitors
C also changes the driving impedance for our chosen single
point matching. For practical purposes, therefore, a detuning of
the two oscillators with respect to each other gives us the
missing degree of freedom for matching at two frequencies.

With regard to a mismatch in theQ’s of both coils, we
would like to mention that the losses of both coils appear in
parallel. That restricts a gain in sensitivity by using a high-Q
idling coil. At higher frequencies it might be desirable to
replace this coil by another effective inductor (resonant trans-
mission line). A mismatch in theQ’s of both coils introduces
a slight change in the relative RF amplitudes at either fre-
quency, which is relatively unimportant.

The strategy for building our DR probe can be summarized
as follows: First, one has to decide on the approximate position
of v2 and v0, i.e., v0 should be somewhat higher than the
expected signal at the higher frequency. This gives us approx-
imate values forL andC. Second, we chooseCc such thatv2

is placed somewhat above the expected lower frequency signal.
The value ofCi is chosen to be somewhat less thanC (similar
to the setup for a single resonance probe).

Now we are ready to tune and match our DR probe. If one
keeps the following basic rules in mind, one will find that
tuning and matching are relatively easy with our probe design:
(i) The frequencies of both simple parallel circuits, controlled
by C andL, have to be very similar for the circuit to behave
like coupled resonators. Otherwise one of the resonances will
disappear. (ii) The coupling capacitorCc changes predomi-
nantly v2 (negligible effect on the input impedance at either
frequency). (iii) Increasing the input capacitorCi lowers the
impedance at both frequencies, and vice versa (as for the
simple circuit). (iv) If one increases (decreases) the resonance
frequencies of both simple parallel circuits while obeying rule
(i), both frequencies increase (decrease) rapidly, but the input
impedances at both frequencies vary slowly. (v) Upon slightly
detuning both parallel circuits, the impedance changes asvlf

andvhf have different signs.

4. PROBE PERFORMANCE

The performance of our probe should be compared with a
single capacitor coupled parallel resonance circuit which has
an identical sample coil. As we already remarked earlier, the
losses in the DR probe are caused by both coils. At first glance,

FIG. 6. Simple parallel circuit (a) and capacitively coupled circuit (b).
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it may seem wasteful to use two such coils. However, if we
filled both coils with sample, the performance of the probe
would be almost that of a single resonance probe (maximum
filling factor).

It is also interesting to compare this double resonance probe
with the often met design, shown in Fig. 7, which is used if the
resonances are far apart.

If we look into the circuit from the high frequency side,Tlf

represents an infinite impedance andThf a short. Therefore, we
effectively see a capacitively coupled parallel circuit. Similar
arguments apply for looking into the low frequency side. We
also realize that this so-called “single coil” design indeed has
a second resonating coil (sometimes resonant lines) at each
frequency, within the traps.

We can also view the circuit in Fig. 7 as two coupled
resonators, each consisting of a trap and the nearest parallel
capacitor. The sample coil then couples both resonators.

Our actual DR probes with the circuitry given in Fig. 5c
were extensively used for studying65,63Cu resonances in
aligned powders of several high temperature superconductors
at 8.3 T (central transition frequencies of about 95 and 102
MHz) with quadrupolar frequencies of about 20 to 40 MHz, as
well as, for performing17O–63Cu double resonance on the
same materials. For the newly developed double resonance
methods between the transitions of a given isotope we refer to
Refs. (7, 8).

We operated our probe from room temperature down to
10 K. Our main cylindrical coil was given by the sample
geometry, and consisted of 12 turns of Cu wire with an inner
diameter of 4 mm and a total length of about 1.5 cm. The
space between the turns was equal to the wire diameter. No
resistors were added. The inductance of the sample coil was
about 0.15mH. The second coil was wound on a threaded
bolt of about 3 mm outer diameter so that by screwing the
bolt in and out the inductance could be varied. This way we
needed only 3 variable capacitors (Watkins-Johnson or Vol-
tronics, 1–12 pF), namelyCi , Cc, andC in parallel with the
sample coil, cf. Fig. 5c. The variable parallel capacitorC
had an additional 5 pF in parallel and the fixed parallel
capacitorC was 15 pF.

With this setup we achieved effectivep/2 pulses of about 1
ms. As an example, at 300 K and for a power of 300 W our
effective p/2 pulse duration was 1.5ms for the63Cu central

transition. This corresponds to an effective RF amplitude of
n9RF 5 167 kHz. Taking into account the factor (I 1 1/ 2) for
the amplification of the central transition effective RF ampli-
tude, we obtainnRF 5 83.5 kHz, or withg 5 11.285 MHz/T,
we find in units of the magnetic fieldBRF ' 7.4 mT. The
measuredQ was about 70 at 95 MHz.

With this setup we could tune and match our probe in the
frequency range of about 75 MHz and 135 MHz without
changing components.

4. CONCLUSION

We have demonstrated that a double resonance probe for
close frequencies can easily be built with an very good
overall performance. We have used the probe extensively
for a variety of double resonance experiments on high
temperature superconductors at variable temperatures. Our
probe design can easily be retuned to form a single reso-
nance probe, e.g., at a fixed temperature. Its special feature,
that changes of the coupling capacitor only affect one of the
frequencies but not the matching at either frequency, al-
lowed us to measure lineshapes of broad resonances with
frequency stepped spin echoes easily. We believe that many
double resonance experiments for close frequencies will
benefit from these or similar designs.

APPENDIX

In order to derive the single-point driving impedance and
matching frequency of our circuit in Fig. 5c it is helpful to add
a second coupling capacitorCi to the right hand side, see Fig.
A1a. Since this new circuit is physically symmetric about the
center line, we can drive it with voltages which will excite
either symmetric or antisymmetric response currents (Figs.
A1b and A1c, respectively).

We define the impedances of the simple parallel circuits
used for the replacement circuits in Fig. A1 byZ0 andZ2,

Z0 5 R
1 1 iQ~1 2 v2LC!

1 1 Q2~1 2 v2LC!2 , [A1]

Z2 5 R
1 1 iQ~1 2 v2L~C 1 2Cc!!

1 1 Q2~1 2 v2L~C 1 2Cc!!
2 . [A2]

With these definitions we find for the currentsI1 andI2 in Figs.
A1b, A1c,

I 1 5
U1

Z2 1 1/~ivCi!
, [A3]

I 2 5
U2

Z0 1 1/~ivCi!
. [A4]

The currents and voltages (I1, U1) and (I2, U2) are both

FIG. 7. Conventional circuit (so-called “single coil design”) for a DR probe
with an input for either frequency (hf, high frequency; lf, low frequency). Tlf and
Thf represent short circuits (traps) at one frequency and infinite impedance at the
other frequency.
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solutions of the circuit shown in Fig. A1a. Since the sys-
tem is linear, their sums are also solutions. We can there-
fore create a situation in which we drive at the left hand side
only by superposing the solutions so as to make the input
current from the right be zero, i.e., by choosingI1 5 I2. The
total voltageU 5 U1 1 U2 and currentI 5 I1 1 I2 are then
given by

U 5 U1S1 1
1 1 ivCiZ0

1 1 ivCiZ2
D , I 5 U1S 2ivCi

1 1 ivCiZ2
D . [A5]

From Eq. [A5] we calculate for the input impedanceZi 5 U/I

Zi 5
1

ivCi
1

Z2 1 Z0

2
. [A6]

This is a general solution to the single-point driving imped-
ance. The matching capacitorCi appears in series with the
mean impedance given by the two normal modes.
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